# МОДУЛЬ КОНТРОЛЯ ПАРАМЕТРОВ СЧЕТЧИКОВ ЭЛЕКТРОЭНЕРГИИ SPC-35D v2

ПАСПОРТ

### СОДЕРЖАНИЕ

|   | Введение                                                      | 3  |
|---|---------------------------------------------------------------|----|
| 1 | Основные сведения об изделии и технические данные             | 3  |
| 2 | Комплектность                                                 | 4  |
| 3 | Внешний вид и назначение органов подключения и индикации      | 4  |
| 4 | Устройство и работа модуля                                    | 6  |
| 5 | Транспортирование и хранение                                  | 8  |
|   | Приложение А – Описание протокола передачи данных ІМ ІМ       | 9  |
|   | Приложение Б – Описание функций и данных протокола ModBus RTU | 14 |

#### Введение

Настоящий паспорт предназначен для ознакомления с правилами эксплуатации модуля контроля параметров счетчиков электроэнергии "SPC-35D", далее по тексту именуемого "модуль".

#### 1 Основные сведения об изделии и технические данные

- **1.1** Модуль предназначен для контроля и передачи по коммуникационной шине SBus измерительной информации от однофазных или трехфазных счетчиков электроэнергии.
- **1.2** Модуль обеспечивает обмен данными по шине SBus (интерфейс RS-485) в полудуплексном режиме по протоколу **IM** (см. приложение A).
- **1.3** Модуль обеспечивает обмен данными по шине SBus (интерфейс RS-485) в полудуплексном режиме по протоколу **ModBus RTU** (см. приложение Б).
- **1.4** Модуль **SPC-35D** обеспечивает считывание параметров счетчиков электроэнергии по интерфейсу RS-485.
- **1.5** Модуль имеет встроенную защиту от импульсных перенапряжений и коротких замыканий входов питания и сигналов шины SBus.
- 1.6 Модуль предназначен для установки на монтажной DIN-рейке шириной 35 мм.
- 1.7 Модуль обеспечивает контроль параметров счетчиков электроэнергии, представленных в таблице 1.

Таблица 1 – Перечень поддерживаемых счетчиков электроэнергии

| Наименование                         | Производитель   | Интерфейс связи           | Тип счетчика |
|--------------------------------------|-----------------|---------------------------|--------------|
| MT113                                |                 |                           | 1130         |
| MT123                                |                 |                           | 1230         |
| MT313                                |                 |                           | 3130         |
| MT323                                |                 |                           | 3230         |
| MT114 AS                             | ТайПит (ЦЕВА)   | RS-485                    | 1140         |
| MT114 AR2S 1)                        | ТайПит (НЕВА)   | K3-465                    | 1144         |
| MT124 AS                             |                 |                           | 1240         |
| MT124 AR2S 1)                        |                 |                           | 1244         |
| MT314                                |                 |                           | 3140         |
| MT324                                |                 |                           | 3240         |
| CE102M                               |                 |                           | 1020         |
| CE301                                | «Энергомера»    | RS-485                    | 3010 (3011)  |
| CE303                                |                 |                           | 3030 (3031)  |
| Меркурий 200.02 (200.04)             |                 |                           | 2000         |
| Меркурий 206 (203.2T <sup>1)</sup> ) |                 | RS-485,                   | 2030         |
| Меркурий 230 ART <sup>1)</sup>       | «НПК «Инкотекс» | CAN (при подключении к    | 2300         |
| Меркурий 234 ART                     |                 | интерфейсу RS-485 модуля) | 2340         |
| Меркурий 236 ART                     |                 |                           | 2360         |

- **1.8** Модуль предназначен для эксплуатации в помещениях с искусственно регулируемыми климатическими условиями в длительном (непрерывном) режиме работы в условиях воздействия:
  - температуры окружающего воздуха от 253 до 323 К (от -20 до 50 °C);
  - − относительной влажности воздуха не более 80 % при температуре не выше 298 К (25 °С);
  - атмосферного давления от 60 до 106,7 кПа (от 450 до 800 мм рт. ст.);
  - атмосферы типа II по ГОСТ 15150–69;
  - механических факторов внешней среды по группе M1 ГОСТ 17516.1-90.

Степень защиты модуля от проникновения посторонних тел и воды – IP20 по ГОСТ 14254–96. Окружающая среда не должна содержать токопроводящей пыли и химически активных веществ.

1.9 Основные технические данные и характеристики модуля представлены в таблице 2.

Таблица 2 – Основные технические данные и характеристики модуля "SPC-35D"

| Параметр                                                                                          | Значение параметра,             |  |  |  |  |
|---------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| · ·                                                                                               | единица измерения               |  |  |  |  |
| Параметры интерфейса счетчика электроэнергии                                                      |                                 |  |  |  |  |
| Тип интерфейса                                                                                    | RS-485 (EIA-485),               |  |  |  |  |
|                                                                                                   | полудуплексный режим            |  |  |  |  |
| Максимальное число контролируемых счетчиков электроэнергии, шт.                                   | 1                               |  |  |  |  |
| Напряжение электропитания интерфейса счетчика, В (максимальный выходной ток)                      | 5 / 7–29 <sup>1)</sup> (150 мА) |  |  |  |  |
| Параметры интерфейса связи                                                                        |                                 |  |  |  |  |
| Коммуникационная шина SBus                                                                        | RS-485 (EIA-485),               |  |  |  |  |
|                                                                                                   | полудуплексный режим            |  |  |  |  |
| Максимальное число модулей на шине при работе по протоколу <b>IM</b> , шт                         | 4 (задается DIP-                |  |  |  |  |
|                                                                                                   | переключателем)                 |  |  |  |  |
| Максимальное число модулей на шине при работе по протоколу <b>ModBus RTU</b> , шт.                | 254 (задается программно)       |  |  |  |  |
| Параметры электропитания                                                                          |                                 |  |  |  |  |
| Диапазон напряжения питания, В постоянного тока                                                   | 8-30                            |  |  |  |  |
| Собственная потребляемая мощность, Вт, не более                                                   | 1,0                             |  |  |  |  |
| Потребляемый ток (номинальный) при обеспечении электропитанием устройств                          | 1,3                             |  |  |  |  |
| на шине SBus, A, не более                                                                         |                                 |  |  |  |  |
| Условия работы                                                                                    |                                 |  |  |  |  |
| Режим работы                                                                                      | непрерывный                     |  |  |  |  |
| Рабочая температура окружающего воздуха                                                           | от -20 до +50 °C                |  |  |  |  |
|                                                                                                   | от –50 до +50 °C /              |  |  |  |  |
| Температура транспортирования / хранения                                                          | от +0 до +50 °C                 |  |  |  |  |
| Степень защиты по ГОСТ 14254                                                                      | IP 20                           |  |  |  |  |
| Размеры и масса                                                                                   |                                 |  |  |  |  |
| Габаритные размеры ШхДхВ, не более                                                                | 53 х 90 х 65 мм                 |  |  |  |  |
| Масса / масса в упаковке                                                                          | не более 0,25 / 0,4 кг          |  |  |  |  |
| 1) Напряжение питания интерфейса счетчика (7-29 B) зависит от напряжения питания модуля (Um) как: |                                 |  |  |  |  |
| Us=Um-1B                                                                                          |                                 |  |  |  |  |

#### 2 Комплектность

2.1 Модуль поставляется в комплекте, указанном в таблице 3.

Таблица 3 – Комплект поставки модуля "SPC-35D"

| Наименование изделия, составной части,<br>документа           | Обозначение       | Кол-во, шт. |
|---------------------------------------------------------------|-------------------|-------------|
| Модуль контроля параметров счетчиков электроэнергии "SPC-35D" | .468351.006-01    | 1           |
| Этикетка                                                      | .468351.006-01 ЭT | 1           |
| Паспорт (поставляется на CD-диске)                            | .468351.006-01 ΠC | 1           |

#### 3 Внешний вид и назначение органов подключения и индикации

3.1 Внешний вид и назначение органов подключения модуля представлен на рисунке 1.

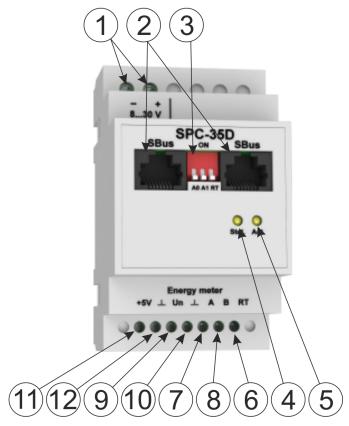



Рисунок 1 – Внешний вид и назначение органов подключения передней панели модуля

На рисунке 1 представлены:

- 1 Клеммные блоки "+" и "-", предназначенные для подключения к модулю источника электропитания;
- 2 Разъемы интерфейса SBus;
- 3 DIP-переключатель, задающий адрес модуля при работе по протоколу IM, а также подключающий терминирующий резистор к шине SBus (должен быть включен, если модуль находится в начале или в конце шины SBus):
- 4 Индикатор "Stat." режима работы модуля. При подаче питания на модуль включен в течение 3-х секунд; включается периодически раз в секунду при работе модуля по протоколу **IM**; включается периодически раз в две секунды при работе модуля по протоколу **ModBus RTU**;
- 5 Индикатор "Act." активности передачи данных по шине SBus;
- 6 Клеммный блок "RT", предназначенный для включения встроенного терминирующего резистора RT (для подключения резистора необходимо соединить перемычкой клеммные блоки "RT" и "B");
- 7 Клеммный блок "A" сигнала A интерфейса RS-485, предназначенного для подключения контролируемого счетчика электроэнергии;
- 8 Клеммный блок "В" сигнала В интерфейса RS-485, предназначенного для подключения контролируемого счетчика электроэнергии;
- 9 Клеммный блок "Un" напряжения 7-29 В (150мА) электропитания счетчика электроэнергии;
- 10 Клеммный блок " общий сигнал напряжения 7-29 В (150мА) электропитания датчиков;
- 11 Клеммный блок "+5V" напряжения 5 В (150мА) электропитания счетчика электроэнергии;
- 12 Клеммный блок "⊥" общий сигнал напряжения 5 В (150мА) электропитания датчиков
- **3.2** Схема электрическая разъемов шины SBus представлена на рисунке 2.

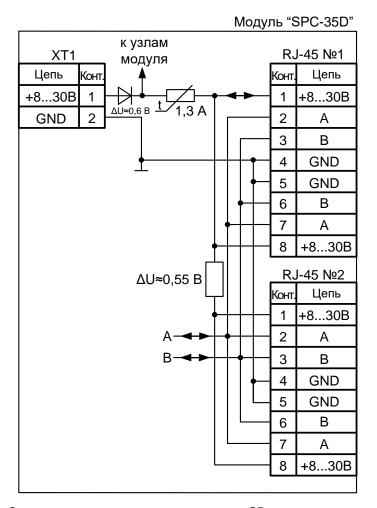



Рисунок 2 – Схема электрическая разъемов шины SBus и входа питания модуля

**ВНИМАНИЕ!** При электропитании модулей по шине Sbus, длина кабеля шины не должна превышать 50 метров

#### 4 Устройство и работа модуля

- 4.1 Распакуйте модуль, проверьте комплектность согласно разделу 2 настоящего паспорта.
- **4.2** Убедитесь, что модуль не поврежден во время транспортирования. Выдержите модуль не менее 3 ч при температуре ( $25 \pm 5$ ) °C, если он длительное время находился в условиях воздействия отрицательных температур.
- 4.3 Установите модуль в рабочем положении.
- **4.4** Подключите, при необходимости, терминирующий резистор "RT" модуля к шине SBus включив в положение "ON" соответствующий флажок DIP-переключателя (см. рисунок 1).
- **4.5** Подключите информационные кабели шины SBus к разъемам SBus модуля (см. рисунок 1) в соответствии со схемой, изображенной на рисунке 2.

**ВНИМАНИЕ!** Разъемы SBus, расположенные на передней панели модуля дублируют друг друга.

**4.6** Подключите счетчик электроэнергии к соответствующим клеммным блокам модуля (см. рисунок 1). Подключите, при необходимости, терминирующий резистор "RT" интерфейса RS-485 подключения счетчика электроэнергии, замкнув перемычкой клеммные блоки "RT", "B" (см. рисунок 1).

**ВНИМАНИЕ!** При подключении счетчиков электроэнергии производства «НПК «Инкотекс» с интерфейсом CAN, необходимо производить подключение в следующем порядке: сигнал "+" интерфейса счетчика подключить к клеммному блоку "В" модуля (см. рисунок 1), а сигнал "-" интерфейса счетчика подключить к клеммному блоку "А" модуля.

**4.7** При эксплуатации модуля совместно с сетевым контроллером iNode CE-35D (либо с иным контроллером по протоколу **IM**), установите требуемый адрес модуля в соответствии с таблицей 3.

Таблица 3 – Адресация модуля SPC-35D на шине SBus

|                                                            | ния флажка<br>еключателя | Номер модуля | Адрес (HEX),<br>протокол <b>IM</b> | Адрес (HEX),<br>протокол <b>ModBus</b> |  |
|------------------------------------------------------------|--------------------------|--------------|------------------------------------|----------------------------------------|--|
| A0                                                         | A0 A1                    |              | '                                  |                                        |  |
| "OFF"                                                      | "OFF"                    | SPC-35D 1    | 0x50                               | AX                                     |  |
| "ON"                                                       | "OFF"                    | SPC-35D 2    | 0x51                               | AX+0x1                                 |  |
| "OFF"                                                      | "ON"                     | SPC-35D 3    | 0x52                               | AX+0x2                                 |  |
| "ON"                                                       | "ON"                     | SPC-35D 4    | 0x53                               | AX+0x3                                 |  |
| - AX – базовый адрес ModBus, установленный в ПО 35D_config |                          |              |                                    |                                        |  |

- **4.9** При эксплуатации модуля с контроллером управления, обеспечивающим обмен данными по протоколу **ModBus RTU**, необходимо произвести начальную настройку параметров модуля с помощью программы **35D\_config.exe**, для чего:
  - запустите исполняемый файл **35D\_config.exe** на ПЭВМ;
  - в открывшемся окне (см. рисунок 5) перейдите на вкладку SPC-35D;
  - установите DIP-переключателем 3 (см. рисунок 1) адрес модуля 0х50, в соответствии с таблицей 3;
  - подключите модуль к ПЭВМ с помощью преобразователя интерфейсов RS-485/RS-232, либо RS-485/USB;
  - подключите к соответствующим клеммным блокам модуля счетчик электроэнергии;

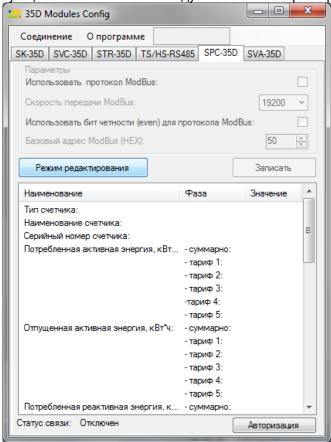



Рисунок 5 – Внешний вид окна ПО 35D config.exe

- выберите пункт меню "*Соединение > Включить*", в открывшемся окне выберите соответствующий Com-порт и нажмите "*Применить*";
  - подайте напряжение питание на вход модуля;

**ВНИМАНИЕ!** В течение 3-х секунд после подачи питания на вход, модуль работает по протоколу IM, не зависимо от того, разрешена работа по протоколу ModBus RTU или запрещена (пункт "Использовать протокол ModBus" (см. рисунок 4)).

- проконтролируйте наличие связи ПЭВМ с модулем по пункту "**Статус связи: Подключен**", расположенному в нижней части окна программы;
  - установите в модуле данные авторизации счетчика электроэнергии в соответствии с таблицей 4;

Таблица 4 – Данные для заполнения данных авторизации счетчика электроэнергии

| Наименование                                                                               | Адрес счетчика эл.энергии                                                                                       | Пароль счетчика эл.энергии                                                                                                              |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| MT113, MT123, MT313, MT323, MT114<br>AS, MT114 AR2S, MT124 AS, MT124<br>AR2S, MT314, MT324 | Адрес счетчика, установленный с помощью специализированного ПО настройки счетчика.  По умолчанию - не требуется | Пароль счетчика, установленный с помощью специализированного ПО настройки счетчика. По умолчанию - не требуется                         |
| Меркурий 200.02 (200.04, 206, 203.2Т)                                                      | Адрес, равный 8 первым символам серийного номера счетчика                                                       | не требуется                                                                                                                            |
| Меркурий 230 ART (234 ART, 236 ART)                                                        | не требуется                                                                                                    | Пароль, установленный в ПО<br>"Конфигуратор" счетчика<br>электроэнергии для уровня<br>доступа 1 (пользователь)<br>По умолчанию - 111111 |
| CE102M, CE301, CE303                                                                       | Адрес счетчика, установленный с помощью специализированного ПО настройки счетчика.  По умолчанию - не требуется | Пароль счетчика, установленный с помощью специализированного ПО настройки счетчика.  По умолчанию - не требуется                        |

- проверьте отображение данных, считанных модулем с счетчика электроэнергии;
- нажмите кнопку "*Режим редактирования*" (при этом параметры модуля станут активными) и установите необходимые параметры протокола ModBus RTU;
- после установки требуемых параметров нажмите на кнопку "*Записать*". После успешной записи данных в модуль, отобразится соответствующее сообщение. При неудачной записи проверьте подключение модуля и повторите попытку записи;
- нажмите кнопку "*Режим редактирования*" (при этом параметры модуля станут не активными) и проконтролируйте корректность считываемых с модуля параметров протокола ModBus RTU и данных подключенных к модулю цифровых датчиков;
  - выберите пункт меню "**Соединение > Выключить**";
- по истечение 30 секунд проконтролируйте по режиму работы индикатора "Stat." (см. рисунок 1) активность выбранного протокола передачи данных;
  - отключите питание модуля.

#### 5 Транспортирование и хранение

- **5.1** Транспортирование модуля должно осуществляться в упаковке предприятия-изготовителя при температуре окружающей среды  $50 \, ^{\circ}\text{C} \div 50 \, ^{\circ}\text{C}$  и верхнем значении относительной влажности до  $100 \, ^{\circ}$  при температуре  $25 \, ^{\circ}\text{C}$ ).
- **5.2** Во время погрузочно-разгрузочных работ и транспортирования упаковки с модулями не должны подвергаться резким ударам и воздействию атмосферных осадков.
- **5.3** Хранение модулей должно осуществляться в упаковке предприятия-изготовителя в закрытых помещениях при температуре окружающего воздуха 0 °C ÷ 50 °C, среднемесячной относительной влажности 80 % при температуре 25 °C. Окружающая среда не должна содержать химически активных веществ, вызывающих коррозии металлов.

## Приложение А Описание протокола передачи данных IM

#### Физический уровень:

В качестве среды передачи данных используется двухпроводный (полудуплексный) дифференциальный интерфейс TIA/EIA-485 (RS-485). Требования к параметрам среды передачи данных приведены в стандарте ANSI/TIA/EIA-485-A-98.

#### Канальный уровень

Канальный уровень обеспечивает создание, передачу и прием кадров данных. Этот уровень обслуживает запросы сетевого уровня и использует сервис физического уровня для приема и передачи пакетов.

Протокол передачи обеспечивает взаимосвязь устройств по принципу: запрос – ответ.

Режим работы устройств в сети – "одномастерный", т.е. в сети имеется одно ведущее устройство (Master), которое инициирует запросы ведомым устройствам (Slave).

Скорость передачи данных фиксирована, составляет 57600 бит/с.

#### Формат данных

Формат данных протокола представлен на рисунке А.1.

| Старт | 8 бит данных | Бит      | Стоп |
|-------|--------------|----------|------|
| бит   | o om gambix  | четности | бит  |

Рисунок А.1 – Формат данных

Посылка каждого байта начинается со старт-бита, после которого следуют 8 бит данных, бит четности и стоп бит. Таким образом, одна посылка данных состоит из 11 бит.

#### Формат фрейма

Обмен данными по протоколу производится фреймами пакетами (данных). Структуры фреймов приведены на рисунках А.2, А.3.

| ſ | Адрес  | Функция | Число байт данных | Код данных 1 | Код данных N | Контрольная сумма |
|---|--------|---------|-------------------|--------------|--------------|-------------------|
| ı | 1 байт | 1 байт  | 1 байт            | 1 байт       | 1 байт       | 1 байт            |

Рисунок А.2 – Структура фрейма запроса данных

| ſ | Адрес  | Функция | Чиспо байт ланных | Кол ланных 1 | Ланные 1   | Кол ланных N | Ланные N   | Контрольная сумма |
|---|--------|---------|-------------------|--------------|------------|--------------|------------|-------------------|
|   | 1 байт | 1 байт  | 1.1               | 1 байт       | 2(4) байта |              | 2(4) байта | •                 |

Рисунок А.3 – Структура фрейма передачи/записи данных

Фрейм начинается с адреса устройства, к которому отправляется запрос (или адрес устройства, которое формирует ответ). Диапазон возможных значений адресов: 0–247. Адрес 0 (нулевой) является широкополосным (в данном протоколе не реализован).

После передачи адреса следует байт функции, определяющий функциональную принадлежность запроса(ответа). Диапазон возможных значений: 0 – 255.

После передачи функции следует передача числа байт данных в пакете;

После передачи числа байт следует передача данных:

- для фрейма запроса данных у ведомого данный блок состоит из перечисления кодов запрашиваемых данных;
- для фреймов передачи/записи данных данный блок состоит из разделов, состоящих из трех (пяти) байт в формате:
  - 1-й байт код данных;
  - 2-й байт первый (старший) байт данных;
  - 3-й байт второй байт данных;
  - (4-й байт третий байт данных)
  - (5-й байт четвертый (младший) байт данных)
  - для фреймов передачи данных серийного номера:
    - 1-й байт код данных;
    - 2 10-й байты данные серийного номера модуля в текстовом формате;

Примечание: передаваемые и принимаемые данные имеют разрядность 16 бит или 32 бита.

#### Приложение А

#### Описание протокола передачи данных ІМ

При ошибке записи/чтения, ведомый модуль возвращает фрейм с установленным старшим битом байта функции.

При успешной записи данных, модуль возвращает копию принятого фрейма.

Передача данных осуществляется побайтно. Максимальное количество передаваемых байт варьируется в зависимости от типа модуля от 60 до 170 байт.

После передачи данных следует байт контрольной суммы, предназначенный для проверки достоверности принимаемой информации.

#### Взаимодействие устройств в сети

return CRC;

}

Передача байт данных в пределах фрейма производится последовательно с промежутком времени между передачей не более 10 мс.

Фрейм считается завершенным, если пауза между передачей данных составляет более 10 мс.

#### Определение достоверности принимаемых данных

Для определения достоверности принимаемых данных используются:

- контроль бита четности при передаче каждого байта (аппаратная функция приемо-передатчика);
- подсчет и сравнение контрольной суммы CRC (Cyclical Redundancy Checking) при передаче фрейма. Контрольная сумма состоит из 1-го байта.

Контрольная сумма подсчитывается и добавляется в конец фрейма передающим устройством, и сравнивается принимающим устройством с контрольной суммой, подсчитанной им по принятым данным.

В подсчете контрольной суммы используются все байты фрейма, начиная с нулевого (адреса). Подсчет контрольной суммы производится с помощью функции по таблице:

const unsigned char CRC8TBL[] = { 0x00,0x5E,0xBC,0xE2,0x61,0x3F,0xDD,0x83,0xC2,0x9C,0x7E,0x20,0xA3,0xFD,0x1F,0x41, 0x9D,0xC3,0x21,0x7F,0xFC,0xA2,0x40,0x1E,0x5F,0x01,0xE3,0xBD,0x3E,0x60,0x82,0xDC, 0x23,0x7D,0x9F,0xC1,0x42,0x1C,0xFE,0xA0,0xE1,0xBF,0x5D,0x03,0x80,0xDE,0x3C,0x62, 0xBE,0xE0,0x02,0x5C,0xDF,0x81,0x63,0x3D,0x7C,0x22,0xC0,0x9E,0x1D,0x43,0xA1,0xFF, 0x46,0x18,0xFA,0xA4,0x27,0x79,0x9B,0xC5,0x84,0xDA,0x38,0x66,0xE5,0xBB,0x59,0x07, 0xDB,0x85,0x67,0x39,0xBA,0xE4,0x06,0x58,0x19,0x47,0xA5,0xFB,0x78,0x26,0xC4,0x9A, 0x65,0x3B,0xD9,0x87,0x04,0x5A,0xB8,0xE6,0xA7,0xF9,0x1B,0x45,0xC6,0x98,0x7A,0x24, 0xF8,0xA6,0x44,0x1A,0x99,0xC7,0x25,0x7B,0x3A,0x64,0x86,0xD8,0x5B,0x05,0xE7,0xB9,  $0 \\ \text{x8C}, 0 \\ \text{xD2}, 0 \\ \text{x30}, 0 \\ \text{x6E}, 0 \\ \text{xED}, 0 \\ \text{xB3}, 0 \\ \text{x51}, 0 \\ \text{x0F}, 0 \\ \text{x4E}, 0 \\ \text{x10}, 0 \\ \text{xF2}, 0 \\ \text{xAC}, 0 \\ \text{x2F}, 0 \\ \text{x71}, 0 \\ \text{x93}, 0 \\ \text{xCD}, 0 \\$ 0x11,0x4F,0xAD,0xF3,0x70,0x2E,0xCC,0x92,0xD3,0x8D,0x6F,0x31,0xB2,0xEC,0x0E,0x50, 0xAF, 0xF1, 0x13, 0x4D, 0xCE, 0x90, 0x72, 0x2C, 0x6D, 0x33, 0xD1, 0x8F, 0x0C, 0x52, 0xB0, 0xEE, 0x32,0x6C,0x8E,0xD0,0x53,0x0D,0xEF,0xB1,0xF0,0xAE,0x4C,0x12,0x91,0xCF,0x2D,0x73, 0xCA,0x94,0x76,0x28,0xAB,0xF5,0x17,0x49,0x08,0x56,0xB4,0xEA,0x69,0x37,0xD5,0x8B, 0x57,0x09,0xEB,0xB5,0x36,0x68,0x8A,0xD4,0x95,0xCB,0x29,0x77,0xF4,0xAA,0x48,0x16, 0xE9,0xB7,0x55,0x0B,0x88,0xD6,0x34,0x6A,0x2B,0x75,0x97,0xC9,0x4A,0x14,0xF6,0xA8, 0x74,0x2A,0xC8,0x96,0x15,0x4B,0xA9,0xF7,0xB6,0xE8,0xOA,0x54,0xD7,0x89,0x6B,0x35}; unsigned char CRC8Count(unsigned char \*buff, unsigned char len) { unsigned char cnt; unsigned char CRC=0; for(cnt=0;cnt<len;cnt++)</pre> CRC=CRC8TBL[CRC^(\*(buff+cnt))];

При выявлении во фрейме ошибок бита четности, адреса или контрольной суммы ответ передающему модулю об ошибке не отправляется.

## Приложение A Описание протокола передачи данных IM

Таблица А.1 – Описание функций и данных протокола **IM** для модуля "SPC-35D"

| -      |           |        | й и данных протокола <b>IM</b> для модуля "SPC-35D"                                      |
|--------|-----------|--------|------------------------------------------------------------------------------------------|
| Код    | Доступные | Число  | Описание                                                                                 |
| данных | функции   | байт   |                                                                                          |
|        |           | данных |                                                                                          |
| 0x40   | 0x10      | 2      | Тип счетчика в соответствии с таблицей 1                                                 |
|        |           |        | (тип данных – unsigned short)                                                            |
| 0x41   | 0x10      | 2      | Значение текущей частоты сети                                                            |
| OX II  | OX10      | _      | (тип данных – unsigned short; диапазон значений частоты от 0 до 65535 (0.01 Гц))         |
| 0x42   | 0x10      | 2      |                                                                                          |
| UX42   | UXTU      |        | Значение угла между напряжениями фаз L1L2                                                |
|        |           |        | (тип данных –signed short; диапазон значений угла от -3600 до 3600 (0.1 °))              |
| 0x43   | 0x10      | 2      | Значение угла между напряжениями фаз L2L3                                                |
|        |           |        | (тип данных –signed short; диапазон значений угла от -3600 до 3600 (0.1 °))              |
| 0x44   | 0x10      | 2      | Значение угла между напряжениями фаз L3L1                                                |
|        |           |        | (тип данных – signed short; диапазон значений угла от -3600 до 3600 (0.1 °))             |
| 0x60   | 0x10      | 4      | Значение активной потребленной энергии нарастающим итогом суммарно по всем               |
| ONOO   | 0,110     |        | тарифам                                                                                  |
|        |           |        | тирифамі (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 |
|        |           |        |                                                                                          |
|        |           |        | (κΒΤ·ч))                                                                                 |
| 0x61   | 0x10      | 4      | Значение активной потребленной энергии нарастающим итогом: Тариф 1                       |
|        |           |        | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001          |
|        |           |        | κBT·ч))                                                                                  |
| 0x62   | 0x10      | 4      | Значение активной потребленной энергии нарастающим итогом: Тариф 2                       |
|        |           |        | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001          |
|        |           |        | (кВТ·ч))                                                                                 |
| 0x63   | 0x10      | 4      | Значение активной потребленной энергии нарастающим итогом: Тариф 3                       |
| 0x03   | UXTU      | 4      |                                                                                          |
|        |           |        | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001          |
|        |           |        | κBT·ч))                                                                                  |
| 0x64   | 0x10      | 4      | Значение активной потребленной энергии нарастающим итогом: Тариф 4                       |
|        |           |        | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001          |
|        |           |        | κBT·ч))                                                                                  |
| 0x65   | 0x10      | 4      | Значение активной потребленной энергии нарастающим итогом: Тариф 5                       |
| CACC   | 0,110     |        | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001          |
|        |           |        | KBT·ч)                                                                                   |
| 000    | 0:40      | 4      |                                                                                          |
| 0x66   | 0x10      | 4      | Значение реактивной потребленной энергии нарастающим итогом суммарно по всем             |
|        |           |        | тарифам                                                                                  |
|        |           |        | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001          |
|        |           |        | кВАР·ч))                                                                                 |
| 0x67   | 0x10      | 4      | Значение реактивной потребленной энергии нарастающим итогом: Тариф 1                     |
|        |           |        | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001          |
|        |           |        | (KBAP·4))                                                                                |
| 0x68   | 0x10      | 4      | Значение реактивной потребленной энергии нарастающим итогом: Тариф 2                     |
| 0,00   | 0.10      |        |                                                                                          |
|        |           |        | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001          |
|        |           |        | кВАР·ч))                                                                                 |
| 0x69   | 0x10      | 4      | Значение реактивной потребленной энергии нарастающим итогом: Тариф 3                     |
|        |           |        | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001          |
|        |           |        | кВАР·ч))                                                                                 |
| 0x6A   | 0x10      | 4      | Значение реактивной потребленной энергии нарастающим итогом: Тариф 4                     |
| 0      | 50        |        | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001          |
|        |           |        | (RBAP·4))                                                                                |
| Oven   | 040       | 4      |                                                                                          |
| 0x6B   | 0x10      | 4      | Значение реактивной потребленной энергии нарастающим итогом: Тариф 5                     |
|        |           |        | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001          |
|        |           |        | кВАР·ч))                                                                                 |
| 0x6C   | 0x10      | 4      | Значение активной отпущенной энергии нарастающим итогом суммарно по всем                 |
|        |           |        | тарифам                                                                                  |
|        |           |        | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001          |
|        |           |        | кВТ·ч))                                                                                  |
| Oven   | 0v10      | 1      |                                                                                          |
| 0x6D   | 0x10      | 4      | Значение активной отпущенной энергии нарастающим итогом: Тариф 1                         |
|        |           |        | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001          |
|        | 1         | 1      | κBT·ч))                                                                                  |

### Приложение А Описание протокола передачи данных IM

Продолжение таблицы А.1

| 0x6E | 0x10 | 4 | Значение активной отпущенной энергии нарастающим итогом: Тариф 2 (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВТ·ч))                    |
|------|------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x6F | 0x10 | 4 | Значение активной отпущенной энергии нарастающим итогом: Тариф 3 (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВТ·ч))                    |
| 0x70 | 0x10 | 4 | Значение активной отпущенной энергии нарастающим итогом: Тариф 4 (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВТ·ч))                    |
| 0x71 | 0x10 | 4 | Значение активной отпущенной энергии нарастающим итогом: Тариф 5 (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВТ·ч))                    |
| 0x72 | 0x10 | 4 | Значение реактивной отпущенной энергии нарастающим итогом суммарно по всем тарифам (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР·ч)) |
| 0x73 | 0x10 | 4 | Значение реактивной отпущенной энергии нарастающим итогом: Тариф 1 (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР·ч))                 |
| 0x74 | 0x10 | 4 | Значение реактивной отпущенной энергии нарастающим итогом: Тариф 2 (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР·ч))                 |
| 0x75 | 0x10 | 4 | Значение реактивной отпущенной энергии нарастающим итогом: Тариф 3 (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР·ч))                 |
| 0x76 | 0x10 | 4 | Значение реактивной отпущенной энергии нарастающим итогом: Тариф 4 (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР·ч))                 |
| 0x77 | 0x10 | 4 | Значение реактивной отпущенной энергии нарастающим итогом: Тариф 5 (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР·ч))                 |
| 0x78 | 0x10 | 4 | Значение текущего напряжения фазы 1<br>(тип данных – signed int; диапазон значений напряжения от -2147483648 до<br>2147483647 (0.001 B))                                    |
| 0x79 | 0x10 | 4 | Значение текущего напряжения фазы 2 (тип данных – signed int; диапазон значений напряжения от -2147483648 до 2147483647 (0.001 B))                                          |
| 0x7A | 0x10 | 4 | Значение текущего напряжения фазы 3<br>(тип данных – signed int; диапазон значений напряжения от -2147483648 до<br>2147483647 (0.001 B))                                    |
| 0x7B | 0x10 | 4 | Значение текущего тока фазы 1<br>(тип данных – signed int; диапазон значений тока от -2147483648 до 2147483647<br>(0.001 A))                                                |
| 0x7C | 0x10 | 4 | Значение текущего тока фазы 2<br>(тип данных – signed int; диапазон значений тока от -2147483648 до 2147483647<br>(0.001 A))                                                |
| 0x7D | 0x10 | 4 | Значение текущего тока фазы 3<br>(тип данных – signed int; диапазон значений тока от -2147483648 до 2147483647<br>(0.001 A))                                                |
| 0x7E | 0x10 | 4 | Значение текущей активной мощности фазы 1<br>(тип данных – signed int; диапазон значений мощности от -2147483648 до<br>2147483647 (0.001 кВт))                              |
| 0x7F | 0x10 | 4 | Значение текущей активной мощности фазы 2<br>(тип данных – signed int; диапазон значений мощности от -2147483648 до<br>2147483647 (0.001 кВт))                              |
| 0x80 | 0x10 | 4 | Значение текущей активной мощности фазы 3 (тип данных – signed int; диапазон значений мощности от -2147483648 до 2147483647 (0.001 кВт))                                    |
| 0x81 | 0x10 | 4 | Значение текущей реактивной мощности фазы 1<br>(тип данных – signed int; диапазон значений мощности от -2147483648 до<br>2147483647 (0.001 кВАР))                           |

## Приложение А Описание протокола передачи данных IM

Продолжение таблицы А.1

| Продолже | ние таблиць  | ı A.1 |                                                                                                                                                                                                                                                                                          |
|----------|--------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x82     | 0x10         | 4     | Значение текущей реактивной мощности фазы 2 (тип данных – signed int; диапазон значений мощности от -2147483648 до                                                                                                                                                                       |
| 0,,02    | 0x10         | 4     | 2147483647 (0.001 KBAP))                                                                                                                                                                                                                                                                 |
| 0x83     | UXTU         | 4     | Значение текущей реактивной мощности фазы 3 (тип данных – signed int; диапазон значений мощности от -2147483648 до 2147483647 (0.001 кВАР))                                                                                                                                              |
| 0x84     | 0x10         | 4     | Значение суммарной текущей активной мощности потребления (тип данных – signed int; диапазон значений мощности от -2147483648 до 2147483647 (0.001 кВт))                                                                                                                                  |
| 0x85     | 0x10         | 4     | Значение суммарной текущей активной мощности генерирования (тип данных – signed int; диапазон значений мощности от -2147483648 до 2147483647 (0.001 кВт))                                                                                                                                |
| 0x86     | 0x10         | 4     | Значение суммарной текущей реактивной мощности потребления (тип данных – signed int; диапазон значений мощности от -2147483648 до 2147483647 (0.001 кВАР))                                                                                                                               |
| 0x87     | 0x10         | 4     | Значение суммарной текущей реактивной мощности генерирования (тип данных – signed int; диапазон значений мощности от -2147483648 до 2147483647 (0.001 кВАР))                                                                                                                             |
| 0xA0     | 0x10         | 2     | Адрес ModBus протокола модуля                                                                                                                                                                                                                                                            |
|          | 0x20         |       | (тип данных – unsigned short; допустимый диапазон от 0 до 255)                                                                                                                                                                                                                           |
| 0xA1     | 0x10         | 2     | Скорость передачи ModBus протокола модуля                                                                                                                                                                                                                                                |
|          | 0x20         |       | (тип данных – unsigned short; допустимые значения: 0-1200; 1-2400; 2-4800; 3-9600; 4-14400; 5-19200; 6-38400; 7-57600; 8-115200; 9-128000 Бит/с)                                                                                                                                         |
| 0xA2     | 0x10<br>0x20 | 2     | Тип используемого протокола (тип данных – unsigned short; допустимые значения: <b>0x0F</b> – протокол <b>IM</b> , <b>0xF0</b> – протокол <b>ModBus RTU</b> )                                                                                                                             |
| 0xA3     | 0x10<br>0x20 | 2     | Наличие бита четности и число стоп бит протокола ModBus (тип данных – unsigned short; допустимые значения: 0x00 – 8N1 (8 бит данных, нет бита четности, 1 стоп бит) 0x0F – 8N2 (8 бит данных, нет бита четности, 2 стоп бита) 0xF0 – 8E1 (8 бит данных, бит четности (Even), 1 стоп бит) |
| 8Ax0     | 0x10         | 9     | Серийный номер модуля в текстовом формате: "50XXYYYY\0", где: 50 – идентификатор модуля (базовый адрес модуля в шестнадцатеричном коде);  XX – год выпуска;  YYYY – порядковый номер модуля по нумерации предприятия-изготовителя \0 – символ конца строки                               |
| 0xA9     | 0x10         | 1-25  | Тип счетчика (строка)                                                                                                                                                                                                                                                                    |
| 0xAA     | 0x10         | 1-17  | Серийный номер счетчика (строка)                                                                                                                                                                                                                                                         |
| 0xAB     | 0x10<br>0x20 | 1-20  | Адрес счетчика (строка до 20 символов)                                                                                                                                                                                                                                                   |
| 0xAC     | 0x10<br>0x20 | 1-20  | Пароль счетчика на чтение (строка до 20 символов)                                                                                                                                                                                                                                        |

Примечание: функция 0х10 – чтение данных; функция 0х20 – запись данных

### Приложение Б Описание функций и данных протокола ModBus RTU

Таблица Б.1 – Описание функций и данных протокола **ModBus RTU** для модуля "SPC-35D"

| ункция | Адрес<br>регистра | Описание                                                                                                                                                   |
|--------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3    | реглетра          | Функция чтения регистров данных                                                                                                                            |
| 0x6    |                   | Функция записи регистров данных по одному                                                                                                                  |
| 0x10   |                   | Функция групповой записи регистров данных                                                                                                                  |
|        | 0.0               | 1 1 1                                                                                                                                                      |
|        | 0x0               | Адрес счетчика (строка до 20 символов)                                                                                                                     |
|        | 0xB               | Пароль счетчика на чтение (строка до 20 символов)                                                                                                          |
| 0x4    |                   | Функция чтения данных                                                                                                                                      |
|        | 0x0               | Тип счетчика в соответствии с таблицей 1                                                                                                                   |
|        |                   | (тип данных – unsigned short)                                                                                                                              |
|        | 0x1               | Значение текущей частоты сети                                                                                                                              |
|        |                   | (тип данных – unsigned short; диапазон значений частоты от 0 до 65535 (0.01 Гц))                                                                           |
|        | 0x2               | Значение угла между напряжениями фаз L1L2                                                                                                                  |
|        |                   | (тип данных –signed short; диапазон значений угла от -3600 до 3600 (0.1 °))                                                                                |
|        | 0x3               | Значение угла между напряжениями фаз L2L3                                                                                                                  |
|        |                   | (тип данных –signed short; диапазон значений угла от -3600 до 3600 (0.1 °))                                                                                |
|        | 0x4               | Значение угла между напряжениями фаз L3L1                                                                                                                  |
|        | 0                 | (тип данных – signed short; диапазон значений угла от -3600 до 3600 (0.1 °))                                                                               |
|        | 0x5               | Значение активной потребленной энергии нарастающим итогом: суммарно по всем тарифам                                                                        |
|        | 0x7               | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВТ·ч))                                                                    |
|        | UX7               | Значение активной потребленной энергии нарастающим итогом: Тариф 1                                                                                         |
|        | 0x9               | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВТ·ч)) Значение активной потребленной энергии нарастающим итогом: Тариф 2 |
|        | UX9               |                                                                                                                                                            |
|        | 0xB               | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВТ·ч)) Значение активной потребленной энергии нарастающим итогом: Тариф 3 |
|        | UXD               | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВТ·ч))                                                                    |
|        | 0xD               | Значение активной потребленной энергии нарастающим итогом: Тариф 4                                                                                         |
|        | UXD               | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВТ·ч))                                                                    |
|        | 0xF               | Значение активной потребленной энергии нарастающим итогом: Тариф 5                                                                                         |
|        | UXF               | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВТ·ч))                                                                    |
|        | 0x11              | Значение реактивной потребленной энергии нарастающим итогом: суммарно по всем тарифам                                                                      |
|        | 0.711             | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР·ч))                                                                   |
|        | 0x13              | Значение реактивной потребленной энергии нарастающим итогом: Тариф 1                                                                                       |
|        | 0.710             | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР·ч))                                                                   |
|        | 0x15              | Значение реактивной потребленной энергии нарастающим итогом: Тариф 2                                                                                       |
|        | 0,7.10            | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР·ч))                                                                   |
|        | 0x17              | Значение реактивной потребленной энергии нарастающим итогом: Тариф 3                                                                                       |
|        | <b></b>           | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР·ч))                                                                   |
|        | 0x19              | Значение реактивной потребленной энергии нарастающим итогом: Тариф 4                                                                                       |
|        |                   | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР·ч))                                                                   |
|        | 0x1B              | Значение реактивной потребленной энергии нарастающим итогом: Тариф 5                                                                                       |
|        |                   | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР·ч))                                                                   |
|        | 0x1D              | Значение активной отпущенной энергии нарастающим итогом: суммарно по всем тарифам                                                                          |
|        |                   | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВТ·ч))                                                                    |
|        | 0x1F              | Значение активной отпущенной энергии нарастающим итогом: Тариф 1                                                                                           |
|        |                   | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВТ·ч))                                                                    |
|        | 0x21              | Значение активной отпущенной энергии нарастающим итогом: Тариф 2                                                                                           |
|        |                   | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВТ·ч))                                                                    |
|        | 0x23              | Значение активной отпущенной энергии нарастающим итогом: Тариф 3                                                                                           |
|        |                   | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВТ·ч))                                                                    |
|        | 0x25              | Значение активной отпущенной энергии нарастающим итогом: Тариф 4                                                                                           |
|        |                   | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВТ·ч))                                                                    |
|        | 0x27              | Значение активной отпущенной энергии нарастающим итогом: Тариф 5                                                                                           |
|        |                   | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВТ·ч))                                                                    |

## Приложение Б Описание протокола функций и данных протокола ModBus RTU

Продолжение таблицы Б.1

|      | ение таблицы Б.1 |                                                                                                                                                                              |  |
|------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0x4  | 0.00             | Функция чтения данных                                                                                                                                                        |  |
|      | 0x29             | Значение реактивной отпущенной энергии нарастающим итогом: суммарно по всем тарифам (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР·ч)) |  |
|      | 0x2B             | Значение реактивной отпущенной энергии нарастающим итогом: Тариф 1                                                                                                           |  |
|      |                  | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР·ч))                                                                                     |  |
|      | 0x2D             | Значение реактивной отпущенной энергии нарастающим итогом: Тариф 2                                                                                                           |  |
|      |                  | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР·ч))                                                                                     |  |
|      | 0x2F             | Значение реактивной отпущенной энергии нарастающим итогом: Тариф 3                                                                                                           |  |
|      |                  | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР ч))                                                                                     |  |
|      | 0x31             | Значение реактивной отпущенной энергии нарастающим итогом: Тариф 4                                                                                                           |  |
|      |                  | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР ч))                                                                                     |  |
|      | 0x33             | Значение реактивной отпущенной энергии нарастающим итогом: Тариф 5                                                                                                           |  |
|      |                  | (тип данных – unsigned int; диапазон значений энергии от 0 до 4294967296 (0.001 кВАР·ч))                                                                                     |  |
|      | 0x35             | Значение текущего напряжения фазы 1                                                                                                                                          |  |
|      |                  | (тип данных – signed int; диапазон значений напряжения от -2147483648 до 2147483647 (0.001 В                                                                                 |  |
|      | 0x37             | Значение текущего напряжения фазы 2                                                                                                                                          |  |
|      |                  | (тип данных – signed int; диапазон значений напряжения от -2147483648 до 2147483647 (0.001 В                                                                                 |  |
|      | 0x39             | Значение текущего напряжения фазы 3                                                                                                                                          |  |
|      |                  | (тип данных – signed int; диапазон значений напряжения от -2147483648 до 2147483647 (0.001 Е                                                                                 |  |
|      | 0x3B             | Значение текущего тока фазы 1                                                                                                                                                |  |
|      |                  | (тип данных – signed int; диапазон значений тока от -2147483648 до 2147483647 (0.001 A))                                                                                     |  |
|      | 0x3D             | Значение текущего тока фазы 2                                                                                                                                                |  |
|      |                  | (тип данных – signed int; диапазон значений тока от -2147483648 до 2147483647 (0.001 A))                                                                                     |  |
|      | 0x3F             | Значение текущего тока фазы 3                                                                                                                                                |  |
|      |                  | (тип данных – signed int; диапазон значений тока от -2147483648 до 2147483647 (0.001 A))                                                                                     |  |
|      | 0x41             | Значение текущей активной мощности фазы 1                                                                                                                                    |  |
|      |                  | (тип данных – signed int; диапазон значений мощности от -2147483648 до 2147483647 (0.001 кВт                                                                                 |  |
|      | 0x43             | Значение текущей активной мощности фазы 2                                                                                                                                    |  |
|      |                  | (тип данных – signed int; диапазон значений мощности от -2147483648 до 2147483647 (0.001 кВт                                                                                 |  |
|      | 0x45             | Значение текущей активной мощности фазы 3                                                                                                                                    |  |
|      |                  | (тип данных – signed int; диапазон значений мощности от -2147483648 до 2147483647 (0.001 кВт                                                                                 |  |
|      | 0x47             | Значение текущей реактивной мощности фазы 1                                                                                                                                  |  |
|      |                  | (тип данных – signed int; диапазон значений мощности от -2147483648 до 2147483647 (0.001 кВАР))                                                                              |  |
|      | 0x49             | Значение текущей реактивной мощности фазы 2                                                                                                                                  |  |
|      |                  | (тип данных – signed int; диапазон значений мощности от -2147483648 до 2147483647 (0.001                                                                                     |  |
|      |                  | (KBAP))                                                                                                                                                                      |  |
|      | 0x4B             | Значение текущей реактивной мощности фазы 3                                                                                                                                  |  |
|      |                  | (тип данных – signed int; диапазон значений мощности от -2147483648 до 2147483647 (0.001                                                                                     |  |
|      |                  | (KBAP))                                                                                                                                                                      |  |
| 0x4  |                  | Функция чтения данных                                                                                                                                                        |  |
|      | 0x4D             | Значение суммарной текущей активной мощности потребления                                                                                                                     |  |
|      |                  | (тип данных – signed int; диапазон значений мощности от -2147483648 до 2147483647 (0.001 кВт                                                                                 |  |
|      | 0x4F             | Значение суммарной текущей активной мощности генерирования                                                                                                                   |  |
|      |                  | (тип данных – signed int; диапазон значений мощности от -2147483648 до 2147483647 (0.001 кВт                                                                                 |  |
|      | 0x51             | Значение суммарной текущей реактивной мощности потребления                                                                                                                   |  |
|      |                  | (тип данных – signed int; диапазон значений мощности от -2147483648 до 2147483647 (0.001                                                                                     |  |
|      |                  | кВАР))                                                                                                                                                                       |  |
|      | 0x53             | Значение суммарной текущей реактивной мощности генерирования                                                                                                                 |  |
|      |                  | (тип данных – signed int; диапазон значений мощности от -2147483648 до 2147483647 (0.001                                                                                     |  |
|      |                  | (KBAP))                                                                                                                                                                      |  |
|      | 0x55             | Тип счетчика (строка до 25 символов)                                                                                                                                         |  |
|      | 0x62             | Серийный номер счетчика (строка до 16 символов)                                                                                                                              |  |
| 0x11 |                  | Функция чтения серийного номера                                                                                                                                              |  |